DocumentCode :
3524545
Title :
Using multi-camera systems in robotics: Efficient solutions to the NPnP problem
Author :
Kneip, Laurent ; Furgale, Paul ; Siegwart, R.
Author_Institution :
Autonomous Syst. Lab., ETH Zurich, Zurich, Switzerland
fYear :
2013
fDate :
6-10 May 2013
Firstpage :
3770
Lastpage :
3776
Abstract :
This paper introduces two novel solutions to the generalized-camera exterior orientation problem, which has a vast number of potential applications in robotics: (i) a minimal solution requiring only three point correspondences, and (ii) gPnP, an efficient, non-iterative n-point solution with linear complexity in the number of points. Already existing minimal solutions require exhaustive algebraic derivations. In contrast, our novel minimal solution is solved in a straightforward manner using the Gröbner basis method. Existing n-point solutions are mostly based on iterative optimization schemes. Our n-point solution is non-iterative and outperforms existing algorithms in terms of computational efficiency. Our results present an evaluation against state-of-the-art single-camera algorithms, and a comparison of different multi-camera setups. It demonstrates the superior noise resilience achieved when using multi-camera configurations, and the efficiency of our algorithms. As a further contribution, we illustrate a possible robotic use-case of our non-perspective orientation computation algorithms by presenting visual odometry results on real data with a non-overlapping multi-camera configuration, including a comparison to a loosely coupled alternative.
Keywords :
algebra; computational complexity; image sensors; iterative methods; robots; Gröbner basis method; NPnP problem; algebraic derivations; computational efficiency; generalized camera exterior orientation problem; iterative optimization schemes; linear complexity; multicamera configurations; multicamera systems; robotics; state-of-the-art single-camera algorithms; Cameras; Robots;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2013 IEEE International Conference on
Conference_Location :
Karlsruhe
ISSN :
1050-4729
Print_ISBN :
978-1-4673-5641-1
Type :
conf
DOI :
10.1109/ICRA.2013.6631107
Filename :
6631107
Link To Document :
بازگشت