DocumentCode :
3525892
Title :
Some statistical issues in estimating information in neural spike trains
Author :
Vu, Vincent Q. ; Yu, Bin ; Kass, Robert E.
Author_Institution :
Dept. of Stat., Univ. of California, Berkeley, CA
fYear :
2009
fDate :
19-24 April 2009
Firstpage :
3509
Lastpage :
3512
Abstract :
Information theory provides an attractive framework for attacking the neural coding problem. This entails estimating information theoretic quantities from neural spike train data. This paper highlights two issues that may arise: non-parametric entropy estimation and non-stationarity. It gives an overview of these issues and some of the progress that has been made.
Keywords :
entropy; maximum likelihood estimation; medical signal processing; neurophysiology; Information theory; information estimation; neural coding problem; neural spike trains; nonparametric entropy estimation; Cognition; Entropy; Estimation theory; Information theory; Mutual information; Nervous system; Neurons; Pulse generation; Signal generators; Statistics; entropy; estimation; information theory; nervous system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
ISSN :
1520-6149
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
Type :
conf
DOI :
10.1109/ICASSP.2009.4960382
Filename :
4960382
Link To Document :
بازگشت