Title :
Spatiotemporal latent semantic cues for moving people tracking
Author :
Zhang, Peng ; Emmanuel, Sabu ; Atrey, Pradeep K. ; Kankanhalli, Mohan S.
Author_Institution :
Sch. of Comput. Eng., Nanyang Technol. Univ., Singapore
Abstract :
Effective and robust visual tracking is one of the most important tasks for the intelligent visual surveillance. In this paper, we proposed a novel method for detecting and tracking moving people using the spatiotemporal latent semantic cues and the incremental eigenspace tracking techniques. During tracking process, the target appearance model is incrementally learned in low dimensional tensor eigenspace by adaptively updating the eigenbasis and sample mean. At the same time, the spatiotemporal latent semantic cues calibrate the estimation of tracking and detect new moving people coming in the same surveillance scene. Experiment results show that with the calibration based on spatiotemporal latent semantic cues, the proposed method can track the moving people automatically and effectively.
Keywords :
eigenvalues and eigenfunctions; image motion analysis; target tracking; tensors; video surveillance; eigenbasis; incremental eigenspace tracking techniques; intelligent visual surveillance; moving people tracking; sample mean; spatiotemporal latent semantic cues; target appearance model; tensor eigenspace; visual tracking; Cameras; Computer science; Layout; Lighting; Noise robustness; Object detection; Spatiotemporal phenomena; Surveillance; Target tracking; Tensile stress; Tracking; detection; eigenvectors; learning systems; surveillance;
Conference_Titel :
Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on
Conference_Location :
Taipei
Print_ISBN :
978-1-4244-2353-8
Electronic_ISBN :
1520-6149
DOI :
10.1109/ICASSP.2009.4960388