DocumentCode :
353207
Title :
Novel blind source separation algorithms using cumulants
Author :
Cruces, Sergio ; Castedo, Luis ; Cichocki, Andrzej
Author_Institution :
Area de Teoria de la Senal, Seville Univ., Spain
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
3152
Abstract :
This paper investigates new algorithms for blind source separation that use cumulants instead of nonlinearities matched to the probability distribution of the sources. It is demonstrated that separation is a saddle point of a cumulant-based entropy cost function. To determine this point we propose two quasi-Newton algorithms whose convergence is isotropic and does not depend on the sources distribution. Moreover, convergence properties remain the same when there is Gaussian noise in the mixture
Keywords :
Gaussian noise; Newton method; adaptive signal processing; convergence of numerical methods; entropy; higher order statistics; Gaussian noise; blind source separation algorithms; convergence properties; cumulant-based entropy cost function; cumulants; probability distribution; quasi-Newton algorithms; saddle point; sources distribution; Array signal processing; Blind source separation; Convergence; Cost function; Entropy; Gaussian noise; Probability distribution; Sensor arrays; Signal processing algorithms; Source separation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.861206
Filename :
861206
Link To Document :
بازگشت