Title :
Area green efficiency (AGE) of two tier heterogeneous cellular networks
Author :
Tabassum, Hina ; Shakir, Muhammad Z. ; Alouini, Mohamed-Slim
Author_Institution :
Comput., Electr., Math. Sci. & Eng. (CEMSE) Div., King Abdullah Univ. of Sci. & Technol. (KAUST), Thuwal, Saudi Arabia
Abstract :
Small cell networks are becoming standard part of the future heterogeneous networks. In this paper, we consider a two tier heterogeneous network which promises energy savings by integrating the femto and macro cellular networks and thereby reducing CO2 emissions, operational and capital expenditures (OPEX and CAPEX) whilst enhancing the area spectral efficiency (ASE) of the network. In this context, we define a performance metric which characterize the aggregate energy savings per unit macrocell area and is referred to as area green efficiency (AGE) of the two tier heterogeneous network where the femto base stations are arranged around the edge of the reference macrocell such that the configuration is referred to as femto-on-edge (FOE). The mobile users in macro and femto cellular networks are transmitting with the adaptive power while maintaining the desired link quality such that the energy aware FOE configuration mandates to save energy, and reduce the co-channel interference. We present a mathematical analysis to incorporate the uplink power control mechanism adopted by the mobile users and calibrate the uplink ASE and AGE of the energy aware FOE configuration. Next, we derive analytical expressions to compute the bounds on the uplink ASE of energy aware FOE configuration and demonstrate that the derived bounds are useful in evaluating the ASE under worst and best case interference scenarios. Simulation results are produced to demonstrate the ASE and AGE improvements in comparison to macro-only and macro-femto configuration with uniformly distributed femtocells.
Keywords :
air pollution control; calibration; carbon compounds; cochannel interference; femtocellular radio; interference suppression; mathematical analysis; microcellular radio; power control; radio links; wireless channels; AGE; ASE; CAPEX; CO2; CO2 emission reduction; OPEX; area green efficiency; area spectral efficiency; calibration; capital expenditure; cochannel interference reduction; energy aware FOE configuration; energy saving; femto-on-edge; femtobase station; link quality; macrocellular network; mathematical analysis; mobile user; operational expenditure; two tier heterogeneous cellular network; uniformly distributed femtocellular network; uplink power control mechanism; Bandwidth; Femtocells; Green products; Macrocell networks; Mobile computing; Uplink; Heterogenous networks; area green efficiency; area spectral efficiency; femtocell networks; power control;
Conference_Titel :
Globecom Workshops (GC Wkshps), 2012 IEEE
Conference_Location :
Anaheim, CA
Print_ISBN :
978-1-4673-4942-0
Electronic_ISBN :
978-1-4673-4940-6
DOI :
10.1109/GLOCOMW.2012.6477629