Title :
Initial results in underwater single image dehazing
Author :
Carlevaris-Bianco, N. ; Mohan, A. ; Eustice, Ryan M.
Author_Institution :
Dept. of Electr. Eng. & Comput. Sci., Univ. of Michigan, Ann Arbor, MI, USA
Abstract :
As light is transmitted from subject to observer it is absorbed and scattered by the medium it passes through. In mediums with large suspended particles, such as fog or turbid water, the effect of scattering can drastically decrease the quality of images. In this paper we present an algorithm for removing the effects of light scattering, referred to as dehazing, in underwater images. Our key contribution is to propose a simple, yet effective, prior that exploits the strong difference in attenuation between the three image color channels in water to estimate the depth of the scene. We then use this estimate to reduce the spatially varying effect of haze in the image. Our method works with a single image and does not require any specialized hardware or prior knowledge of the scene. As a by-product of the dehazing process, an up-to-scale depth map of the scene is produced. We present results over multiple real underwater images and over a controlled test set where the target distance and true colors are known.
Keywords :
image colour analysis; light scattering; light transmission; underwater optics; image color channels; image dehazing; light absorbtion; light scattering; light transmision; suspended particles; underwater images; Atmospheric modeling; Attenuation; Estimation; Image color analysis; Pixel; Scattering; Wheels;
Conference_Titel :
OCEANS 2010
Conference_Location :
Seattle, WA
Print_ISBN :
978-1-4244-4332-1
DOI :
10.1109/OCEANS.2010.5664428