DocumentCode :
35348
Title :
Random Set Methods: Estimation of Multiple Extended Objects
Author :
Granstrom, Karl ; Lundquist, Christian ; Gustafsson, Fredrik ; Orguner, Umut
Author_Institution :
Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden
Volume :
21
Issue :
2
fYear :
2014
fDate :
Jun-14
Firstpage :
73
Lastpage :
82
Abstract :
Random set-based methods have provided a rigorous Bayesian framework and have been used extensively in the last decade for point object estimation. In this article, we emphasize that the same methodology offers an equally powerful approach to estimation of so-called extended objects, i.e., objects that result in multiple detections on the sensor side. Building upon the analogy between Bayesian state estimation of a single object and random finite set (RFS) estimation for multiple objects, we give a tutorial on random set methods with an emphasis on multiple-extended-object estimation. The capabilities are illustrated on a simple yet insightful real-life example with laser range data containing several occlusions.
Keywords :
Bayes methods; SLAM (robots); mobile robots; object tracking; random processes; state estimation; Bayesian framework; Bayesian state estimation; RFS estimation; SLAM; autonomous robot vehicle; extended object estimation; extended-object tracking; laser range data; multiple extended object estimation; point object estimation; random finite set estimation; sensor; Bayes methods; Estimation; Object tracking; Robot sensing systems; Surveillance; Time measurement;
fLanguage :
English
Journal_Title :
Robotics & Automation Magazine, IEEE
Publisher :
ieee
ISSN :
1070-9932
Type :
jour
DOI :
10.1109/MRA.2013.2283185
Filename :
6767045
Link To Document :
بازگشت