DocumentCode :
353543
Title :
Exact ML estimation of spectroscopic parameters
Author :
Stoica, Petre ; Sundin, Tomas
Author_Institution :
Dept. of Syst. & Control, Uppsala Univ., Sweden
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
41
Abstract :
In a paper on spectroscopic imaging Spielman et al. (1988) made the important point that apriori information about the compounds present can and should be incorporated into the estimation of spectroscopic signal parameters. They proposed using the maximum likelihood (ML) approach for parameter estimation, but failed to incorporate properly the full apriori information that was assumed to be available. Consequently they ended-up with a spectroscopic imaging method that is only a suboptimal approximation of the ML method. In this paper we derive the exact ML method, present a computationally efficient implementation of it and illustrate numerically the performance gain that can be achieved over the method of Spielman et al
Keywords :
computational complexity; fast Fourier transforms; image processing; magnetic resonance imaging; magnetic resonance spectroscopy; maximum likelihood estimation; spectral analysis; FFT; ML method; a priori information; compounds; computational complexity; computationally efficient implementation; exact ML estimation; magnetic resonance spectroscopy; maximum likelihood estimation; parameter estimation; performance gain; spectroscopic imaging; spectroscopic signal parameters; suboptimal approximation; Control systems; Equations; Frequency; Magnetic noise; Maximum likelihood estimation; Parameter estimation; Performance gain; Phase estimation; Sampling methods; Spectroscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.861857
Filename :
861857
Link To Document :
بازگشت