DocumentCode :
353645
Title :
Short-data-record estimators of the MVDR/NMSE filter
Author :
Pados, Dimitris A. ; Karystinos, George N.
Author_Institution :
Dept. of Electr. Eng., State Univ. of New York, Buffalo, NY, USA
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
384
Abstract :
We show that statistical conditional optimization criteria lead to the development of a simple iterative algorithm that starts from the matched filter (or constraint vector of interest) and generates a sequence of filters that converges to the minimum-variance-distortionless-response (MVDR) solution for any positive definite input autocorrelation matrix. When the input autocorrelation matrix is replaced by a conventional sample-average (positive definite) estimate, the algorithm effectively generates a sequence of MVDR filter estimators; the bias converges rapidly to zero and the covariance trace raises slowly and asymptotically to the covariance trace of the familiar sample-matrix-inversion (SMI) estimator. For short-data-records, the early elements of the generated sequence of estimators offer favorable bias/covariance balance and are seen to outperform in mean-square estimation error (constrained-)LMS, RLS-type, and, certainly, SMI estimates
Keywords :
convergence of numerical methods; correlation methods; filtering theory; iterative methods; least mean squares methods; matrix inversion; parameter estimation; signal sampling; statistical analysis; MVDR filter estimators; MVDR/NMSE filter; RLS-type estimate; bias convergence; constrained-LMS estimate; constraint vector; covariance trace; input autocorrelation matrix; iterative algorithm; linear filter; matched filter; mean-square estimation error; minimum-variance-distortionless-response; positive definite estimate; positive definite input autocorrelation matrix; sample-average estimate; sample-matrix-inversion estimator; short-data-record estimators; statistical conditional optimization; Algorithm design and analysis; Autocorrelation; Constraint optimization; Covariance matrix; Ear; Estimation error; Filtering; Iterative algorithms; Matched filters; Protection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.861984
Filename :
861984
Link To Document :
بازگشت