DocumentCode :
353694
Title :
The α-EM algorithm and its applications
Author :
Matsuyama, Yasuo
Author_Institution :
Dept. of Electr., Electron. & Comput. Eng., Waseda Univ., Tokyo, Japan
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
592
Abstract :
The α-EM algorithm is a super-class of the traditional expectation-maximization (EM) algorithm. This algorithm is derived by computing the likelihood ratio of incomplete data through an extended logarithm; namely, the α-logarithm. The case of α=-1 corresponds to the logarithm. The number α adjusts eigenvalues of update matrices by reflecting the optimization function´s second-order properties with respect to the estimation parameter. This property shows merits on speedup of convergence. In the paper, a derivation of the algorithm is given first. Then, convergence and speedup properties are discussed. Finally, the applicability of the α-FM algorithm and examples are shown
Keywords :
Hessian matrices; Jacobian matrices; convergence of numerical methods; eigenvalues and eigenfunctions; iterative methods; maximum likelihood estimation; optimisation; parameter estimation; α-EM algorithm; α-logarithm; convergence speed; eigenvalues; estimation parameter; expectation-maximization algorithm; extended logarithm; incomplete data likelihood ratio; iterative optimization; optimization function; update matrices; Convergence; Cost function;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 2000. ICASSP '00. Proceedings. 2000 IEEE International Conference on
Conference_Location :
Istanbul
ISSN :
1520-6149
Print_ISBN :
0-7803-6293-4
Type :
conf
DOI :
10.1109/ICASSP.2000.862051
Filename :
862051
Link To Document :
بازگشت