• DocumentCode
    3537890
  • Title

    Robust interference identification for multi-RAT optimization in wireless cellular networks

  • Author

    Pollakis, E. ; Cavalcante, R.L.G. ; Stanczak, Slawomir ; Penna, Federico

  • Author_Institution
    Fraunhofer Inst. for Telecommun., Heinrich Hertz Inst., Berlin, Germany
  • fYear
    2012
  • fDate
    16-19 Oct. 2012
  • Firstpage
    284
  • Lastpage
    284
  • Abstract
    The objective of this study is to devise novel cognitive interference identification techniques for UMTS and LTE networks. We apply machine learning techniques to reconstruct interference patterns using a priori system knowledge, limited user information and sparse pathloss and interference measurements. The obtained interference patterns are used to build a multi-RAT optimization procedure aiming at energy efficient operation.
  • Keywords
    3G mobile communication; Long Term Evolution; cellular radio; learning (artificial intelligence); optimisation; radiofrequency interference; radiofrequency measurement; telecommunication computing; LTE networks; UMTS; cognitive interference identification techniques; interference measurements; interference patterns reconstruction; machine learning techniques; multiRAT optimization; robust interference identification; sparse pathloss; user information; wireless cellular networks; 3G mobile communication; Energy consumption; Interference; Optimization; Quality of service; Signal processing algorithms; Wireless communication;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Dynamic Spectrum Access Networks (DYSPAN), 2012 IEEE International Symposium on
  • Conference_Location
    Bellevue, WA
  • Print_ISBN
    978-1-4673-4447-0
  • Electronic_ISBN
    978-1-4673-4446-3
  • Type

    conf

  • DOI
    10.1109/DYSPAN.2012.6478147
  • Filename
    6478147