DocumentCode :
3540014
Title :
Achieving super-linearity speedup by implementing randomized problem of genetics algorithm
Author :
Yugopuspito, Pujianto ; Reynaldi, Arnold ; Krisnadi, Dion ; Setyven
Author_Institution :
Inf., Comput. Sci. Fac., Univ. Pelita Harapan, Tangerang, Indonesia
fYear :
2012
fDate :
14-15 Aug. 2012
Firstpage :
82
Lastpage :
85
Abstract :
In this paper, Amdahl´s Law for multicore processors is revisited and applied to the case of parallel genetic algorithm. This paper uses parallel master-slave model for function evaluation and independent identical processing model for genetic algorithm. Moreover, the super-linear speedup for parallel genetic algorithm has been found in one of our algorithm.
Keywords :
genetic algorithms; microprocessor chips; multiprocessing systems; performance evaluation; Amdahl law; function evaluation; independent identical processing model; multicore processors; parallel genetic algorithm; parallel master-slave model; randomized problem; super-linearity speedup; Computational modeling; Genetic algorithms; Master-slave; Multicore processing; Program processors; Sociology; Statistics; Parallel genetic algorithm; multicore Amdahl´s law; super-linearity speedup;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Uncertainty Reasoning and Knowledge Engineering (URKE), 2012 2nd International Conference on
Conference_Location :
Jalarta
Print_ISBN :
978-1-4673-1459-6
Type :
conf
DOI :
10.1109/URKE.2012.6319590
Filename :
6319590
Link To Document :
بازگشت