DocumentCode :
3540170
Title :
Using semantic web to reduce the cold-start problems in recommendation systems
Author :
Nouali, Omar ; Belloui, Amokrane
Author_Institution :
Centre de Rech. sur I ´´Inf. Sci. et Tech., Inst. Nat. d´´Inf., Algeria
fYear :
2009
fDate :
4-6 Aug. 2009
Firstpage :
525
Lastpage :
530
Abstract :
Collaborative filtering systems suffer from the cold-start problems (evaluation matrix, new user/new resource problem...). In this paper, we show that using semantic information describing users and resources can reduce the problems and lead to a better precision, coverage and quality for the recommendation engine. Semantic web is the infrastructure used for managing such semantic descriptions. We also present here the results of a set of evaluation experiments.
Keywords :
groupware; information filters; semantic Web; collaborative filtering systems; recommendation systems; semantic Web; Active filters; Collaboration; Filtering algorithms; Information filtering; Information filters; Ontologies; Passive filters; Search engines; Semantic Web; Videos;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Applications of Digital Information and Web Technologies, 2009. ICADIWT '09. Second International Conference on the
Conference_Location :
London
Print_ISBN :
978-1-4244-4456-4
Electronic_ISBN :
978-1-4244-4457-1
Type :
conf
DOI :
10.1109/ICADIWT.2009.5273972
Filename :
5273972
Link To Document :
بازگشت