• DocumentCode
    3540233
  • Title

    Efficient block and time-recursive estimation of sparse Volterra systems

  • Author

    Adalbjörnsson, Stefan I. ; Glentis, George-Othon ; Jakobsson, Andreas

  • Author_Institution
    Math. Stat., Lund Univ., Lund, Sweden
  • fYear
    2012
  • fDate
    5-8 Aug. 2012
  • Firstpage
    173
  • Lastpage
    176
  • Abstract
    We investigate the application of non-convex penalized least squares for parameter estimation in the Volterra model. Sparsity is promoted by introducing a weighted ℓq penalty on the parameters and efficient batch and time recursive algorithms are devised based on the cyclic coordinate descent approach. Numerical examples illustrate the improved performance of the proposed algorithms as compared the weighted ℓ1 norm.
  • Keywords
    Newton-Raphson method; computational complexity; concave programming; least squares approximations; nonlinear filters; parameter estimation; recursive estimation; Newton-Raphson style algorithm; block estimation; cyclic coordinate descent approach; nonconvex penalized least squares; parameter estimation; sparse Volterra filter; sparse Volterra systems; time-recursive estimation; Charge coupled devices; Estimation; Minimization; Optimization; Polynomials; Signal processing algorithms; Vectors; Nonlinear system identification; Sparse regression; Volterra filters;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Statistical Signal Processing Workshop (SSP), 2012 IEEE
  • Conference_Location
    Ann Arbor, MI
  • ISSN
    pending
  • Print_ISBN
    978-1-4673-0182-4
  • Electronic_ISBN
    pending
  • Type

    conf

  • DOI
    10.1109/SSP.2012.6319651
  • Filename
    6319651