DocumentCode :
3540233
Title :
Efficient block and time-recursive estimation of sparse Volterra systems
Author :
Adalbjörnsson, Stefan I. ; Glentis, George-Othon ; Jakobsson, Andreas
Author_Institution :
Math. Stat., Lund Univ., Lund, Sweden
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
173
Lastpage :
176
Abstract :
We investigate the application of non-convex penalized least squares for parameter estimation in the Volterra model. Sparsity is promoted by introducing a weighted ℓq penalty on the parameters and efficient batch and time recursive algorithms are devised based on the cyclic coordinate descent approach. Numerical examples illustrate the improved performance of the proposed algorithms as compared the weighted ℓ1 norm.
Keywords :
Newton-Raphson method; computational complexity; concave programming; least squares approximations; nonlinear filters; parameter estimation; recursive estimation; Newton-Raphson style algorithm; block estimation; cyclic coordinate descent approach; nonconvex penalized least squares; parameter estimation; sparse Volterra filter; sparse Volterra systems; time-recursive estimation; Charge coupled devices; Estimation; Minimization; Optimization; Polynomials; Signal processing algorithms; Vectors; Nonlinear system identification; Sparse regression; Volterra filters;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319651
Filename :
6319651
Link To Document :
بازگشت