DocumentCode
3540233
Title
Efficient block and time-recursive estimation of sparse Volterra systems
Author
Adalbjörnsson, Stefan I. ; Glentis, George-Othon ; Jakobsson, Andreas
Author_Institution
Math. Stat., Lund Univ., Lund, Sweden
fYear
2012
fDate
5-8 Aug. 2012
Firstpage
173
Lastpage
176
Abstract
We investigate the application of non-convex penalized least squares for parameter estimation in the Volterra model. Sparsity is promoted by introducing a weighted ℓq penalty on the parameters and efficient batch and time recursive algorithms are devised based on the cyclic coordinate descent approach. Numerical examples illustrate the improved performance of the proposed algorithms as compared the weighted ℓ1 norm.
Keywords
Newton-Raphson method; computational complexity; concave programming; least squares approximations; nonlinear filters; parameter estimation; recursive estimation; Newton-Raphson style algorithm; block estimation; cyclic coordinate descent approach; nonconvex penalized least squares; parameter estimation; sparse Volterra filter; sparse Volterra systems; time-recursive estimation; Charge coupled devices; Estimation; Minimization; Optimization; Polynomials; Signal processing algorithms; Vectors; Nonlinear system identification; Sparse regression; Volterra filters;
fLanguage
English
Publisher
ieee
Conference_Titel
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location
Ann Arbor, MI
ISSN
pending
Print_ISBN
978-1-4673-0182-4
Electronic_ISBN
pending
Type
conf
DOI
10.1109/SSP.2012.6319651
Filename
6319651
Link To Document