DocumentCode :
3540319
Title :
Adaptive filtering for lightning electric field (LEF) signals in fractional Fourier domain
Author :
Rojas, Herbert ; Cortes, Camilo
Author_Institution :
Electromagn. Compatibility Group EMC-UNC, Univ. Nac. de Colombia, Bogota, Colombia
fYear :
2012
fDate :
5-8 Aug. 2012
Firstpage :
213
Lastpage :
216
Abstract :
This paper presents the application of an adaptive filtering algorithm, including the parameter estimation, in fractional Fourier transform domain (FRFd) for lightning electric field (LEF) signals. The adaptive algorithm in FRFd is based in the good energy concentration property of the fractional Fourier transform (FRFT). The proposed adaptive filtering algorithm integrates the advantages that LLMS and NLMS algorithms possess, introducing a leakage factor to reduce the memory effect when tracking a non-stationary signal. Moreover, the step-size is normalized to reduce the effect of the input signal power on the algorithm performance. The SNR behavior of the output filtered signal is analyzed for different LEF signals, showing that the proposed algorithm have better performance in low SNR environment.
Keywords :
Fourier transforms; adaptive filters; electric fields; least mean squares methods; lightning; parameter estimation; LLMS algorithm; NLMS algorithm; adaptive filtering; energy concentration; fractional Fourier transform domain; leakage factor; lightning electric field signals; memory effect; nonstationary signal; parameter estimation; Adaptive filters; Electric fields; Filtering algorithms; Least squares approximation; Lightning; Signal processing algorithms; Signal to noise ratio; Fractional Fourier transform; adaptive filters; denoising; electric field; fractional Fourier domains; least mean square algorithms; lightning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
ISSN :
pending
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/SSP.2012.6319663
Filename :
6319663
Link To Document :
بازگشت