Title :
A graphical model representation of the track-oriented multiple hypothesis tracker
Author :
Frank, Andrew ; Smyth, Padhraic ; Ihler, Alexander
Author_Institution :
Dept. of Comput. Sci., Univ. of California, Irvine, CA, USA
Abstract :
The track-oriented multiple hypothesis tracker is currently the preferred method for tracking multiple targets in clutter with medium to high computational resources. This method maintains a structured representation of the track posterior distribution, which it repeatedly extends and optimizes over. This representation of the posterior admits probabilistic inference tasks beyond MAP estimation that have yet to be explored. To this end we formulate the posterior as a graphical model and show that belief propagation can be used to approximate the track marginals. These approximate marginals enable an online parameter estimation scheme that improves tracker performance in the presence of parameter misspecification.
Keywords :
belief networks; clutter; inference mechanisms; maximum likelihood estimation; performance evaluation; target tracking; trees (mathematics); MAP estimation; approximate track marginals; belief propagation; clutter; graphical model representation; multiple target tracking; online parameter estimation; parameter misspecification; posterior representation; probabilistic inference tasks; track posterior distribution; track-oriented multiple hypothesis tracker; tracker performance improvement; Approximation algorithms; Approximation methods; Belief propagation; Estimation; Parameter estimation; Signal processing algorithms; Target tracking; graphical model; multi-target tracking; multiple hypothesis tracker; parameter estimation; track-oriented;
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2012 IEEE
Conference_Location :
Ann Arbor, MI
Print_ISBN :
978-1-4673-0182-4
Electronic_ISBN :
pending
DOI :
10.1109/SSP.2012.6319817