Title :
Clustering DNA methylation expressions using nonparametric beta mixture model
Author :
Zhang, Lin ; Meng, Jia ; Liu, Hui ; Huang, Yufei
Author_Institution :
Sch. of Inf. & Electr. Eng., China Univ. of Min. Technol., Xuzhou, China
Abstract :
The problem of defining the clustering structure in DNA methylation expressions is considered. A Dirichlet process beta mixture model (DPBMM) is proposed that models the DNA methylation data array. The model allows automatic learning of the cluster structure parameters such as the cluster mixing proportion, the models of each cluster, and especially the number of clusters. To enable the learning, we proposed a Gibbs sampling algorithm for computing the posterior distributions, hence the estimates of the parameters. We investigate the performance of the proposed clustering algorithm via simulation.
Keywords :
DNA; biology computing; learning (artificial intelligence); parameter estimation; pattern clustering; sampling methods; statistical distributions; DNA methylation data array; DNA methylation expression clustering structure; Dirichlet process beta mixture model; Gibbs sampling algorithm; automatic learning; cluster mixing proportion; nonparametric beta mixture model; parameter estimation; posterior distribution computation; Arrays; Bayesian methods; Clustering algorithms; Computational modeling; DNA; Data models; Measurement; DNA methylation microarray; Dirichlet process mixture (DPM); Gibbs sampling; beta mixture model;
Conference_Titel :
Genomic Signal Processing and Statistics (GENSIPS), 2011 IEEE International Workshop on
Conference_Location :
San Antonio, TX
Print_ISBN :
978-1-4673-0491-7
Electronic_ISBN :
2150-3001
DOI :
10.1109/GENSiPS.2011.6169472