Title :
Effective Schottky Barrier Height modulation using dielectric dipoles for source/drain specific contact resistivity improvement
Author :
Ang, K.-W. ; Majumdar, K. ; Matthews, K. ; Young, Chadwin D. ; Kenney, C. ; Hobbs, Chris ; Kirsch, P.D. ; Jammy, R. ; Clark, R.D. ; Consiglio, S. ; Tapily, K. ; Trickett, Y. ; Nakamura, G. ; Wajda, C.S. ; Leusink, G.J. ; Rodgers, M. ; Gausepohl, Steve C.
Author_Institution :
SEMATECH, Albany, NY, USA
Abstract :
We demonstrate statistically significant data for specific contact resistivity (ρc) of sub-10-8Ω-cm2 and sub-2×10-8Ω-cm2 for N-type and P-type Si respectively on 300mm wafer by introducing ultra-thin ALD high-k dielectric layer(s) between the metal and Si. A 6-terminal Cross-Bridge Kelvin (6T-CBK) structure was used for the extraction to achieve excellent resolution in this small ρc range. With the help of measurements from multiple dielectric stacks and Non-Equilibrium Green´s Function (NEGF) based quantum transport calculations, we clearly show that the suppression of evanescent metal induced gap states (MIGS) and formation of interface dipole play significant role to reduce the ρc as long as the tunneling resistance of the dielectric stack is small. Finally, transient response, break down mechanism and technology benchmarking are discussed which show promise for sub-14nm node applications.
Keywords :
Green´s function methods; MOSFET; Schottky barriers; atomic layer deposition; contact resistance; elemental semiconductors; high-k dielectric thin films; semiconductor device breakdown; silicon; transient response; 6-terminal cross-bridge Kelvin structure; 6T-CBK structure; FinFET; MIGS; NEGF; atomic layer deposition; breakdown mechanism; dielectric dipoles; dielectric stack; effective Schottky barrier height modulation; evanescent metal induced gap state suppression; interface dipole; multiple dielectric stacks; n-type silicon; nonequilibrium Green´s function; p-type siilicon; quantum transport calculations; size 300 mm; source-drain specific contact resistivity improvement; transient response; tunneling resistance; ultrathin ALD high-k dielectric layer; Aluminum oxide; Conductivity; Dielectrics; High K dielectric materials; Silicon;
Conference_Titel :
Electron Devices Meeting (IEDM), 2012 IEEE International
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4673-4872-0
Electronic_ISBN :
0163-1918
DOI :
10.1109/IEDM.2012.6479068