DocumentCode :
3544372
Title :
Dynamic Neuro-modelling Using Bacterial Foraging Optimisation with Fuzzy Adaptation
Author :
Supriyono, H. ; Tokhi, M.O.
Author_Institution :
Dept. of Autom. Control & Syst. Eng., Univ. of Sheffield, Sheffield, UK
fYear :
2012
fDate :
8-10 Feb. 2012
Firstpage :
109
Lastpage :
114
Abstract :
This paper presents current work on fuzzy adaptation of chemotactic step size of bacterial foraging algorithm and its application to optimisation of parameters of a neural network, i.e. weights, biases and slope parameters of activation function, in modelling of a single-link flexible manipulator. Experimental input-output data pairs gathered from a laboratory-scale single-link flexible manipulator rig are used both in the modelling and validating phases. Moreover, a set of correlation tests is used to validate the resulted model. The objective of the work is to assess the performances of the improved bacterial foraging algorithms in comparison to standard one based on the cost function value achieved, convergence speed, and time-domain responses.
Keywords :
flexible manipulators; fuzzy set theory; neurocontrollers; optimisation; bacterial foraging optimisation; chemotactic step size; dynamic neuro-modelling; fuzzy adaptation; input-output data pairs; laboratory scale single link flexible manipulator rig; neural network; Adaptation models; Artificial neural networks; Cost function; Data models; Manipulators; Microorganisms; Predictive models; Flexible manipulator; fuzzy adaptation; improved bacterial foraging algorithm; neural network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems, Modelling and Simulation (ISMS), 2012 Third International Conference on
Conference_Location :
Kota Kinabalu
Print_ISBN :
978-1-4673-0886-1
Type :
conf
DOI :
10.1109/ISMS.2012.107
Filename :
6169684
Link To Document :
بازگشت