DocumentCode :
3549180
Title :
Graph embedding: a general framework for dimensionality reduction
Author :
Yan, Shuicheng ; Xu, Dong ; Zhang, Benyu ; Zhang, Hong-Jiang
Author_Institution :
Dept. of Inf. Eng., Chinese Univ. of Hong Kong, Shatin, China
Volume :
2
fYear :
2005
fDate :
20-25 June 2005
Firstpage :
830
Abstract :
In the last decades, a large family of algorithms - supervised or unsupervised; stemming from statistic or geometry theory - have been proposed to provide different solutions to the problem of dimensionality reduction. In this paper, beyond the different motivations of these algorithms, we propose a general framework, graph embedding along with its linearization and kernelization, which in theory reveals the underlying objective shared by most previous algorithms. It presents a unified perspective to understand these algorithms; that is, each algorithm can be considered as the direct graph embedding or its linear/kernel extension of some specific graph characterizing certain statistic or geometry property of a data set. Furthermore, this framework is a general platform to develop new algorithm for dimensionality reduction. To this end, we propose a new supervised algorithm, Marginal Fisher Analysis (MFA), for dimensionality reduction by designing two graphs that characterize the intra-class compactness and inter-class separability, respectively. MFA measures the intra-class compactness with the distance between each data point and its neighboring points of the same class, and measures the inter-class separability with the class margins; thus it overcomes the limitations of traditional Linear Discriminant Analysis algorithm in terms of data distribution assumptions and available projection directions. The toy problem on artificial data and the real face recognition experiments both show the superiority of our proposed MFA in comparison to LDA.
Keywords :
face recognition; graph theory; learning (artificial intelligence); Linear Discriminant Analysis algorithm; Marginal Fisher Analysis; artificial data; class margins; dimensionality reduction; face recognition; geometry property; graph embedding; inter-class separability; projection directions; supervised algorithm; Algorithm design and analysis; Asia; Geometry; Kernel; Laboratories; Laplace equations; Linear discriminant analysis; Principal component analysis; Statistics; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-2372-2
Type :
conf
DOI :
10.1109/CVPR.2005.170
Filename :
1467529
Link To Document :
بازگشت