DocumentCode :
3549281
Title :
Parallel Montgomery multiplication in GF(2k) using trinomial residue arithmetic
Author :
Bajard, Jean-Claude ; Imbert, Laurent ; Jullien, Graham A.
Author_Institution :
CNRS, Montpellier, France
fYear :
2005
fDate :
27-29 June 2005
Firstpage :
164
Lastpage :
171
Abstract :
We propose the first general multiplication algorithm in GF(2k) with a subquadratic area complexity of O(k85/) = O(k1.6). Using the Chinese remainder theorem, we represent the elements of GF(2k); i.e. the polynomials in GF(2) [X] of degree at most k-1, by their remainder modulo a set of n pairwise prime trinomials, T1,...,Tn, of degree d and such that nd ≥ k. Our algorithm is based on Montgomery´s multiplication applied to the ring formed by the direct product of the trinomials.
Keywords :
Galois fields; computational complexity; cryptography; digital arithmetic; parallel algorithms; polynomials; Chinese remainder theorem; Galois field; multiplication algorithm; parallel Montgomery multiplication; subquadratic area complexity; trinomial residue arithmetic; Digital arithmetic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Arithmetic, 2005. ARITH-17 2005. 17th IEEE Symposium on
ISSN :
1063-6889
Print_ISBN :
0-7695-2366-8
Type :
conf
DOI :
10.1109/ARITH.2005.34
Filename :
1467636
Link To Document :
بازگشت