DocumentCode :
3549605
Title :
Machine learning techniques for ontology-based leaf classification
Author :
Fu, Hong ; Chi, Zheru ; Feng, Dagan ; Song, Jiatao
Author_Institution :
Dept. of Electron. & Inf. Eng., Hong Kong Polytech. Univ., Kowloon, China
Volume :
1
fYear :
2004
fDate :
6-9 Dec. 2004
Firstpage :
681
Abstract :
Leaf classification, indexing as well as retrieval is an important part of a computerized plant identification system. In this paper, an integrated approach for an ontology-based leaf classification system is proposed, wherein machine learning techniques play a crucial role for the automatization of the system. For the leaf contour classification, a scaled CCD code system is proposed to categorize the basic shape and margin type of a leaf by using the similar taxonomy principle adopted by the botanists. Then a trained neural network is employed to recognize the detailed tooth patterns. The measurement on an unlobed leaf is also conducted automatically according to the method used in botany. For the leaf vein recognition, the vein texture is extracted by employing an efficient combined thresholding and neural network approach so as to obtain more vein details of a leaf. Compared with the past studies, the proposed method integrates low-level features of an image and the specific knowledge in the domain (ontology) of botany, and therefore provides a more practical system for users to comprehend and handle. Primary experiments have shown promising results and proven the feasibility of the proposed system.
Keywords :
botany; feature extraction; image classification; image retrieval; image texture; learning (artificial intelligence); neural nets; ontologies (artificial intelligence); CCD code system; botany; leaf vein recognition; machine learning; ontology-based leaf classification; trained neural network; Charge coupled devices; Indexing; Machine learning; Neural networks; Ontologies; Pattern recognition; Shape; Taxonomy; Teeth; Veins;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control, Automation, Robotics and Vision Conference, 2004. ICARCV 2004 8th
Print_ISBN :
0-7803-8653-1
Type :
conf
DOI :
10.1109/ICARCV.2004.1468909
Filename :
1468909
Link To Document :
بازگشت