• DocumentCode
    3551330
  • Title

    Nonlinear system identification by evolutionary computation and recursive estimation method

  • Author

    Juang, Jih-Gau ; Lin, Bo-Shian

  • Author_Institution
    Dept. of Commun. & Guidance Eng., Nat. Taiwan Occan Univ., Keelung, Taiwan
  • fYear
    2005
  • fDate
    8-10 June 2005
  • Firstpage
    5073
  • Abstract
    Nonlinear system identification using evolutionary computation and recursive estimation method is presented. Four different recursive estimation methods, recursive least-squares, recursive least-squares with exponential forgetting, stochastic algorithm, and projection algorithm, combined with evolution algorithm are used in this study. Conventional system identification using recursive estimation methods are also given for comparison. After test, the proposed scheme has better convergence and accuracy on parameter estimation than the conventional estimation method.
  • Keywords
    evolutionary computation; nonlinear systems; recursive estimation; stochastic processes; evolutionary computation; exponential forgetting; nonlinear system identification; parameter estimation; projection algorithm; recursive estimation; recursive least-squares; stochastic algorithm; Control system analysis; Convergence; Evolutionary computation; Genetic programming; Mathematical model; Nonlinear systems; Parameter estimation; Recursive estimation; Resonance light scattering; System identification;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    American Control Conference, 2005. Proceedings of the 2005
  • ISSN
    0743-1619
  • Print_ISBN
    0-7803-9098-9
  • Electronic_ISBN
    0743-1619
  • Type

    conf

  • DOI
    10.1109/ACC.2005.1470820
  • Filename
    1470820