DocumentCode :
3554038
Title :
Polarimetric SAR image segmentation with hidden Markov random field models
Author :
Harger, Robert O.
Author_Institution :
Dept. of Electr. Eng., Maryland Univ., College Park, MD, USA
fYear :
1991
fDate :
7-10 Apr 1991
Firstpage :
611
Abstract :
A segmentation algorithm based on a hidden Markov random field model is applied to a (HH, VV) polarimetric SAR (synthetic aperture radar) image pair. The segmentations, assuming two classes, of the HH and VV images separately are shown, after 100 stages of stochastic relaxation. The results agree with the visual perception of the images. The segmentation, assuming two classes, of HH and VV images jointly is also shown, again after 100 stages
Keywords :
Markov processes; electromagnetic wave polarisation; picture processing; radar; HH images; VV images; hidden Markov random field models; image segmentation algorithm; polarimetric SAR; stochastic relaxation; synthetic aperture radar; visual perception; Annealing; Convergence; Distributed computing; Hidden Markov models; Image processing; Image segmentation; Maximum likelihood estimation; Parameter estimation; Roads; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Southeastcon '91., IEEE Proceedings of
Conference_Location :
Williamsburg, VA
Print_ISBN :
0-7803-0033-5
Type :
conf
DOI :
10.1109/SECON.1991.147828
Filename :
147828
Link To Document :
بازگشت