DocumentCode :
3560689
Title :
Performance Tradeoffs in Amplify-and-Forward Bidirectional Network Beamforming
Author :
Zaeri-Amirani, Mohammad ; ShahbazPanahi, Shahram ; Mirfakhraie, Tina ; Ozdemir, Kemal
Author_Institution :
Inst. of Technol., Univ. of Ontario, Oshawa, ON, Canada
Volume :
60
Issue :
8
fYear :
2012
Firstpage :
4196
Lastpage :
4209
Abstract :
We study and compare the performance of two bidirectional network beamforming schemes, namely the multiple access broadcast channel (MABC) strategy and the time division broadcast channel (TDBC) protocol, using joint optimal power control and beamforming design. To do so, we first design two TDBC-based bidirectional network beamformers, through minimization of the total power consumed in the whole network subject to quality of service (QoS) constraints, for the two cases with and without a direct link between the two transceivers. The corresponding power minimization problems are carried out over the transceiver transmit powers as well as relay beamforming weights, thus resulting in a jointly optimal power allocation and beamforming criterion. We devise optimal second-order cone programming based solutions as well as fast gradient-based solutions to these problems. We then use these solutions to compare the performance of the underlying TDBC-based approach to that of the MABC-based technique. This comparison is important because the TDBC approach appears to have certain advantages which can be exploited towards improving the performance of two-way network beamforming. These advantages include the additional degrees of freedom as well as the possibility of benefitting from the availability of a direct link between the two transceivers. Interestingly, in the absence of a direct link between the two transceivers, we show that when the QoS constraints are imposed to meet certain given probabilities of uncoded error [or, equivalently, to meet certain signal-to-noise ratio (SNR) constraints], these two schemes perform closely in terms of the minimum total transmit power. However, when the QoS constraints are used to guarantee certain given rates, the MABC-based scheme outperforms the TDBC counterpart. In the case when a direct link exists between the two transceivers, the TDBC-based approach can outperform the MABC-based method, even for rate satisfying QoS constraints, - rovided that the direct link is strong enough.
Keywords :
amplify and forward communication; array signal processing; convex programming; cooperative communication; fading channels; probability; quality of service; radio transceivers; time division multiple access; wireless channels; MABC strategy; QoS; SNR; TDBC-based bidirectional network beamformers; amplify-and-forward bidirectional network beamforming; beamforming criterion; beamforming design; destructive fading effects; multiple access broadcast channel strategy; optimal power allocation; optimal power control; optimal second-order cone programming; performance improvement; performance tradeoffs; quality-of-service constraints; relay beamforming weights; signal-to-noise ratio constraints; time division broadcast channel protocol; total power consumption minimization; uncoded error probabilities; user-cooperative communication schemes; wireless channels; Array signal processing; Data models; Minimization; Noise; Relays; Transceivers; Vectors; Bidirectional relaying; cooperative communications; network beamforming; two-way relaying;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
Conference_Location :
5/1/2012 12:00:00 AM
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2012.2197203
Filename :
6193233
Link To Document :
بازگشت