DocumentCode :
3562196
Title :
Study of ECG quality using self learning techniques
Author :
Toninelli, Gianfranco ; Gerevini, Alfonso ; Serina, Ivan ; Vaglio, Martino ; Badilini, Fabio
Author_Institution :
AMPS-LLC, New York, NY, USA
fYear :
2014
Firstpage :
577
Lastpage :
580
Abstract :
The aim of this study was to develop a method that could automatically evaluate the quality of ECG recordings. In several situations, people performing the recording don´t have the knowledge to evaluate the quality of the ECG and an immediate feedback about it would be useful. Since there is not a consensus on how to define and quantify ECG quality, we applied self learning techniques starting from a set (N= 1 OOO) of randomly selected ECGs from our internal repository. The full set of ECGs was blindly flagged by an expert cardiologist and subsequently analyzed by AMPS software which automatically computes a set of quality metrics. These quality parameters were used to train a neural network and build a decision tree. The performance of the proposed solutions were evaluated using the mean squared error (MSE) between expected results (from the ECGs set) and obtained results (from neural network and decision tree). The MSE resulting from the neural network and the decision tree were O.O1 and 0.004, respectively, indicating an error in range of 1%.
Keywords :
bioelectric potentials; decision trees; electrocardiography; feedback; learning (artificial intelligence); mean square error methods; medical computing; neural nets; AMPS software; ECG recording quality; decision tree; internal repository; mean squared error; neural network; quality metrics; self learning techniques; Abstracts; Artificial neural networks; Electrocardiography; Facsimile; Measurement; Reliability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computing in Cardiology Conference (CinC), 2014
ISSN :
2325-8861
Print_ISBN :
978-1-4799-4346-3
Type :
conf
Filename :
7043108
Link To Document :
بازگشت