Title :
Global optimization approaches for parameter tuning in biomedical signal processing: A focus on multi-scale entropy
Author :
Ghassemi, Mohammad ; Lehman, Li-wei ; Snoek, Jasper ; Nemati, Shamim
Author_Institution :
Massachusetts Inst. of Technol., Cambridge, MA, USA
Abstract :
Many algorithms used for the analysis of physiological signals include hyper-parameters that must be selected by the investigator. The ultimate choice of these parameter values can have a dramatic impact on the performance of the approach. Addressing this issue often requires investigators to manually tune parameters for their particular data-set. In this study, we illustrate the importance of global optimization techniques for the automated determination of parameter values in the multi-scale entropy (MSE) algorithm. Importantly, we demonstrate that global optimization techniques provide an effective, and automated framework for tuning parameters of such algorithms, and easily improve upon the default settings selected by experts.
Keywords :
data analysis; entropy; feature selection; medical signal processing; optimisation; MSE algorithm; automated parameter tuning framework; automated parameter value determination; biomedical signal processing; dataset; expert default setting selection; global optimization technique; hyperparameter selection; manual parameter tuning; multiscale entropy; parameter value effect; parameter value selection; physiological signal analysis algorithm; Bayes methods; Entropy; Genetic algorithms; Optimization; Physiology; Support vector machines; Time series analysis;
Conference_Titel :
Computing in Cardiology Conference (CinC), 2014
Print_ISBN :
978-1-4799-4346-3