Title :
Enhancement mode strained (1.3%) germanium quantum well FinFET (WFin=20nm) with high mobility (μHole=700 cm2/Vs), low EOT (∼0.7nm) on bulk silicon substrate
Author :
Agrawal, A. ; Barth, M. ; Rayner, G.B. ; Arun, V.T. ; Eichfeld, C. ; Lavallee, G. ; Yu, S.-Y. ; Sang, X. ; Brookes, S. ; Zheng, Y. ; Lee, Y.-J. ; Lin, Y.-R. ; Wu, C.-H. ; Ko, C.-H. ; LeBeau, J. ; Engel-Herbert, R. ; Mohney, S.E. ; Yeo, Y.-C. ; Datta, S.
Author_Institution :
Pennsylvania State Univ., University Park, PA, USA
Abstract :
Compressively strained Ge (s-Ge) quantum well (QW) FinFETs with Si0.3Ge0.7 buffer are fabricated on 300mm bulk Si substrate with 20nm WFin and 80nm fin pitch using sidewall image transfer (SIT) patterning process. We demonstrate (a) in-situ process flow for a tri-layer high-κ dielectric HfO2/Al2O3/GeOx gate stack achieving ultrathin EOT of 0.7nm with low DIT and low gate leakage; (b) 1.3% s-Ge FinFETs with Phosphorus doped Si0.3Ge0.7 buffer on bulk Si substrate exhibiting peak μh=700 cm2/Vs, μh=220 cm2/Vs at 1013 /cm2 hole density. The s-Ge FinFETs achieve the highest μ*Cmax of 3.1×10-4 F/Vs resulting in 5x higher ION over unstrained Ge FinFETs.
Keywords :
Ge-Si alloys; MOSFET; aluminium compounds; elemental semiconductors; germanium; hafnium compounds; high-k dielectric thin films; semiconductor quantum wells; silicon; Ge; HfO2-Al2O3-GeOx; SIT patterning process; Si; Si0.3Ge0.7; bulk Si substrate; compressively strained Ge quantum well FinFET; fin pitch; in-situ process flow; phosphorus doped Si0.3Ge0.7 buffer; s-Ge QW FinFET; sidewall image transfer patterning process; size 20 nm; size 300 mm; tri-layer high-κ dielectric HfO2-Al2O3-GeOx gate stack; Aluminum oxide; Doping; FinFETs; Hafnium compounds; Logic gates; Silicon;
Conference_Titel :
Electron Devices Meeting (IEDM), 2014 IEEE International
DOI :
10.1109/IEDM.2014.7047064