DocumentCode :
356769
Title :
A genetic approach to ARMA filter synthesis for EEG signal simulation
Author :
Janeczko, C. ; Lopes, Heitor S.
Author_Institution :
Dept. of Electron., CEFET-PR, Brazil
Volume :
1
fYear :
2000
fDate :
2000
Firstpage :
373
Abstract :
This paper describes the computational simulation of an electroencephalographic (EEG) signal (background activity, alpha waves) by filtering a white noise with an ARMA (Autoregressive Moving Average) filter. The filter coefficients were obtained interactively using genetic algorithms, comparing the spectrum of a real and a simulated signal. Results demonstrate the feasibility of the technique
Keywords :
autoregressive moving average processes; electroencephalography; filtering theory; genetic algorithms; medical signal processing; white noise; ARMA filter synthesis; EEG signal simulation; alpha waves; autoregressive moving average filter; background activity; computational simulation; electroencephalographic signal; genetic algorithms; white noise; Autoregressive processes; Brain modeling; Computational modeling; Differential equations; Electroencephalography; Filtering; Filters; Genetics; Signal synthesis; White noise;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2000. Proceedings of the 2000 Congress on
Conference_Location :
La Jolla, CA
Print_ISBN :
0-7803-6375-2
Type :
conf
DOI :
10.1109/CEC.2000.870319
Filename :
870319
Link To Document :
بازگشت