Title :
Clustering of emotional states under different task difficulty levels for the robot-assisted rehabilitation system-RehabRoby
Author :
Aypar, Yigit Can ; Palaska, Yunus ; Gokay, Ramazan ; Masazade, Engin ; Barkana, Duygun Erol ; Sarkar, Nilanjan
Author_Institution :
Department of Electrical and Electronics Engineering, Yeditepe University, 34755, Istanbul, Turkey
Abstract :
In this paper, we study an unsupervised learning problem where the aim is to cluster the emotional state (excitedness, boredom, or stress) using the biofeedback sensor data while subjects perform tasks under different difficulty levels on the robot assisted rehabilitation system-RehabRoby. The dimension of the training vectors has been reduced by using the Principal Component Analysis (PCA) algorithm after collecting the biofeedback sensor measurements from different subjects under different task difficulty levels to better visualize the sensor data. The reduced dimension vectors are fed into a K-means clustering algorithm. Numerical results have been given to demonstrate that for each training vector, the emotional state decided by the clustering algorithm is consistent with the subjects declaration of his/her emotional state obtained via surveys after performing the task.
Keywords :
Electrocardiography; Robot sensing systems; Skin; Temperature measurement; Temperature sensors; Training; Biofeedback Sensors; Robot-assisted Rehabilitation System; Unsupervised Learning;
Conference_Titel :
Informatics in Control, Automation and Robotics (ICINCO), 2014 11th International Conference on