DocumentCode :
3571556
Title :
A Method to Select RBFNN´s Center Based on the SOFM Network
Author :
Zheng, Mingwen ; Zhang, Yanping
Author_Institution :
Sch. of Sci., ShanDong Univ. of Technol., Zibo, China
Volume :
2
fYear :
2012
Firstpage :
87
Lastpage :
89
Abstract :
In order to improve the RBFNN´s central choice method, proposed one kind of optimized choice radial basis function neural network data center´s algorithm. This algorithm combined SOFM network´s pattern classification ability, preliminary results of the classification used as the initial RBFNN data center, and then used OLS algorithm to train RBFNN. Simulation experiments show that the algorithm´s approximation ability and generalization ability is better than RBFNN only used the OLS algorithm.
Keywords :
least squares approximations; pattern classification; radial basis function networks; self-organising feature maps; OLS algorithm; RBFNN center selection; RBFNN central choice method; SOFM network pattern classification ability; algorithm approximation ability; generalization ability; orthogonal least squares method; radial basis function neural network data center algorithm; self-organization mapping net; Approximation algorithms; Approximation methods; Classification algorithms; Mathematical model; Radial basis function networks; Training; Vectors; Orthogonal Least Squares Method; Radial Basis Function Neural Network; SOFM Network; input samples;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Electronics Engineering (ICCSEE), 2012 International Conference on
Print_ISBN :
978-1-4673-0689-8
Type :
conf
DOI :
10.1109/ICCSEE.2012.5
Filename :
6187971
Link To Document :
بازگشت