DocumentCode
3571970
Title
Implicit h type finite-element error estimator for the vector helmholtz equation
Author
Losch, Markus ; Farle, Ortwin ; Baltes, Rolf ; Dyczij-Edlinger, Romanus
Author_Institution
Dept. for Electromagn. Theor., Saarland Univ., Saarbrucken, Germany
fYear
2015
Firstpage
335
Lastpage
337
Abstract
A dual-corrected, goal-oriented error estimator is presented. While existing methods employ p hierarchical basis functions for enriching the FE space for the dual problem, the present method uses hierarchichal h refinement, based on a hanging-variables framework. The paper emphasizes the importance of enriching the gradient subspace. Numerical results demonstrate that the proposed method restores optimal rates of convergence even in presence of singularities.
Keywords
Helmholtz equations; error analysis; finite element analysis; gradient methods; FE space; dual problem; dual-corrected goal-oriented error estimator; gradient subspace; hanging-variable framework; hierarchichal h refinement; implicit h type finite element error estimator; p hierarchical basis functions; vector Helmholtz equation; Convergence; Iron; Magnetic domains; Stripline; Surface impedance; Surface waves; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational Electromagnetics (ICCEM), 2015 IEEE International Conference on
Type
conf
DOI
10.1109/COMPEM.2015.7052653
Filename
7052653
Link To Document