• DocumentCode
    3571970
  • Title

    Implicit h type finite-element error estimator for the vector helmholtz equation

  • Author

    Losch, Markus ; Farle, Ortwin ; Baltes, Rolf ; Dyczij-Edlinger, Romanus

  • Author_Institution
    Dept. for Electromagn. Theor., Saarland Univ., Saarbrucken, Germany
  • fYear
    2015
  • Firstpage
    335
  • Lastpage
    337
  • Abstract
    A dual-corrected, goal-oriented error estimator is presented. While existing methods employ p hierarchical basis functions for enriching the FE space for the dual problem, the present method uses hierarchichal h refinement, based on a hanging-variables framework. The paper emphasizes the importance of enriching the gradient subspace. Numerical results demonstrate that the proposed method restores optimal rates of convergence even in presence of singularities.
  • Keywords
    Helmholtz equations; error analysis; finite element analysis; gradient methods; FE space; dual problem; dual-corrected goal-oriented error estimator; gradient subspace; hanging-variable framework; hierarchichal h refinement; implicit h type finite element error estimator; p hierarchical basis functions; vector Helmholtz equation; Convergence; Iron; Magnetic domains; Stripline; Surface impedance; Surface waves; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computational Electromagnetics (ICCEM), 2015 IEEE International Conference on
  • Type

    conf

  • DOI
    10.1109/COMPEM.2015.7052653
  • Filename
    7052653