DocumentCode :
3571970
Title :
Implicit h type finite-element error estimator for the vector helmholtz equation
Author :
Losch, Markus ; Farle, Ortwin ; Baltes, Rolf ; Dyczij-Edlinger, Romanus
Author_Institution :
Dept. for Electromagn. Theor., Saarland Univ., Saarbrucken, Germany
fYear :
2015
Firstpage :
335
Lastpage :
337
Abstract :
A dual-corrected, goal-oriented error estimator is presented. While existing methods employ p hierarchical basis functions for enriching the FE space for the dual problem, the present method uses hierarchichal h refinement, based on a hanging-variables framework. The paper emphasizes the importance of enriching the gradient subspace. Numerical results demonstrate that the proposed method restores optimal rates of convergence even in presence of singularities.
Keywords :
Helmholtz equations; error analysis; finite element analysis; gradient methods; FE space; dual problem; dual-corrected goal-oriented error estimator; gradient subspace; hanging-variable framework; hierarchichal h refinement; implicit h type finite element error estimator; p hierarchical basis functions; vector Helmholtz equation; Convergence; Iron; Magnetic domains; Stripline; Surface impedance; Surface waves; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Electromagnetics (ICCEM), 2015 IEEE International Conference on
Type :
conf
DOI :
10.1109/COMPEM.2015.7052653
Filename :
7052653
Link To Document :
بازگشت