• DocumentCode
    357376
  • Title

    On the convergence of nonstationary solutions of the Perron-Frobenius equation to the invariant density

  • Author

    Goloubentsev, Alexander F. ; Anikin, Valery M. ; Arkadaksky, Sergey S.

  • Author_Institution
    Dept. of Comput. Phys., Saratov State Univ., Russia
  • Volume
    1
  • fYear
    2000
  • fDate
    2000
  • Firstpage
    142
  • Abstract
    The generating function for the eigenfunctions of the Frobenius-Perron operator of the chaotic maps that are conjugated (related by invertible differentiable transformations) to the tent (pyramidal) map is found. The nonstationary solutions of the Perron-Frobenius equation are expressed in terms of the eigenfunctions of the Perron-Frobenius operator. In this context the convergence of nonstationary densities to invariant one is analysed. The elements of 0-space of evolution operator are found
  • Keywords
    chaos; convergence of numerical methods; eigenvalues and eigenfunctions; Frobenius-Perron operator; Perron-Frobenius equation; chaotic maps; eigenfunctions; evolution operator; invariant density; invertible differentiable transformations; nonstationary densities; nonstationary solutions; pyramidal map; tent map; Chaos; Difference equations; Eigenvalues and eigenfunctions; Physics computing; Piecewise linear techniques; Polynomials;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control of Oscillations and Chaos, 2000. Proceedings. 2000 2nd International Conference
  • Conference_Location
    St. Petersburg
  • Print_ISBN
    0-7803-6434-1
  • Type

    conf

  • DOI
    10.1109/COC.2000.873537
  • Filename
    873537