• DocumentCode
    3577880
  • Title

    Turing instability of a predator-prey model with Beddington-DeAngelis functional response on a circular domain

  • Author

    Abid, Walid ; Yafia, Radouane ; Alaoui, My Ahmed Aziz ; Bouhafa, Habib ; Abichou, Azgal

  • Author_Institution
    Lab. d´Ing., Math., Ecole Polytech. de Tunis, Tunis, Tunisia
  • fYear
    2014
  • Firstpage
    498
  • Lastpage
    503
  • Abstract
    In the present work, we are investigating the spatiotemporal dynamics predator-prey model with modified Leslie-Gower and Beddington-DeAngelis functional response. This model is given by a reaction diffusion system defined on a circular spatial domain. We prove the existence of critical lines of Hopf and Turing bifurcations in the circular spatial domain by using mathematical theory. In the end, we carry out numerical simulations to interpret how biological processes affect spatiotemporal pattern formation in a disc spatial domain and the role of the bifurcation parameter on the solutions of the model.
  • Keywords
    bifurcation; predator-prey systems; reaction-diffusion systems; Beddington-DeAngelis functional response; Hopf bifurcation parameter; Turing bifurcation parameter; biological processes; circular spatial domain; critical lines; disc spatial domain; mathematical theory; modified Leslie-Gower functional response; numerical simulations; reaction diffusion system; spatiotemporal dynamics predator-prey model; spatiotemporal pattern formation; Equations; Jacobian matrices; Numerical models;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Complex Systems (WCCS), 2014 Second World Conference on
  • Print_ISBN
    978-1-4799-4648-8
  • Type

    conf

  • DOI
    10.1109/ICoCS.2014.7060899
  • Filename
    7060899