DocumentCode :
3580877
Title :
Fully unsupervised clustering in nonlinearly separable data using intelligent Kernel K-Means
Author :
Handhayani, Teny ; Wasito, Ito
Author_Institution :
Fac. of Inf. Technol., Tarumanagara Univ., Jakarta, Indonesia
fYear :
2014
Firstpage :
450
Lastpage :
453
Abstract :
Intelligent Kernel K-Means is a fully unsupervised clustering technique. This technique is developed by combining Intelligent K-Means and Kernel K-Means. Intelligent Kernel K-Means used to cluster kernel matrix without any information about the number of clusters. The goal of this research is to evaluate the performance of Intelligent Kernel K-Means for clustering nonlinearly separable data. Various artificial nonlinearly separable data are used in this experiment. The best result is the clustering often ring datasets. It produces Adjusted Rand Index (ARI) = 1.
Keywords :
pattern clustering; ARI; adjusted Rand index; artificial nonlinearly separable data; intelligent kernel k-means; kernel matrix; nonlinearly separable data clustering; ring datasets; unsupervised clustering; Clustering algorithms; Compounds; Computer science; Indexes; Kernel; Moon; Vectors; K-Means; clustering; fully unsupervised clustering; intelligent Kernel K-Means;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Computer Science and Information Systems (ICACSIS), 2014 International Conference on
Type :
conf
DOI :
10.1109/ICACSIS.2014.7065891
Filename :
7065891
Link To Document :
بازگشت