DocumentCode :
3582346
Title :
Effect of device, size, activation energy, temperature, and frequency on memristor switching time
Author :
Abunahla, Heba ; Mohammad, Baker ; Homouz, Dirar
Author_Institution :
Dept. of Electr. & Comput. Eng., Khalifa Univ., Abu Dhabi, United Arab Emirates
fYear :
2014
Firstpage :
60
Lastpage :
63
Abstract :
Memristor has a potential to play a big role in the electronics industry as it provides small size, low cost and low power. However, the asymmetry between the ON and OFF switching times of the device hinders the adaption of the device in modern electronics systems. The contribution of this paper is to explore the relationship between the length of the memristor and the switching times. To achieve this the nonlinear model of oxygen vacancies is used. The model also includes coupling with electron transfer. The study shows that tuning the device length can affect the switching time significantly. This paper shows that having a device length of 10-nm gives switching ON and OFF times in the range of 4s - 13ns for applied voltage of 1V - 2.3V. In additon, the obtained OFF/ON switching time ratio is 3x compared to several order of magnitudes reported inliterature for device length of 50-nm. The proposed model is also used to study the effect of changing temperature, activation energy and frequency on memristor switching time.
Keywords :
memristors; semiconductor device models; tuning; activation energy; device length; device size; electron transfer; electronics industry; electronics systems; memristor switching time; off-on switching time ratio; oxygen vacancies; size 10 nm; size 50 nm; time 45 s to 13 ns; voltage 1 V to 2.3 V; Memristor; activation energy; device modeling; frequency; geometry; temperature;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Microelectronics (ICM), 2014 26th International Conference on
Type :
conf
DOI :
10.1109/ICM.2014.7071806
Filename :
7071806
Link To Document :
بازگشت