DocumentCode :
3582704
Title :
Anomaly based intrusion detection for Building Automation and Control networks
Author :
Zhiwen Pan ; Hariri, Salim ; Al-Nashif, Youssif
Author_Institution :
NSF Center for Cloud & Autonomic Comput., Univ. of Arizona, Tucson, AZ, USA
fYear :
2014
Firstpage :
72
Lastpage :
77
Abstract :
Advanced networking technology and increasing information services have led to extensive interconnection between Building Automation and Control (BAC) networks and Internet. The connection to Internet and public networks massively elevates the risk of the BAC networks being attacked. In this paper, we present a framework for a rule based anomaly detection of Building Automation and Control networks. We develop an anomaly based intrusion detection system to the building network by training the system with dataflows that are dynamically captured from the Fire Alarm System testbed using the BACnet Protocol Monitoring module. The rules acquired from the offline data mining procedure can detect attacks against the BACnet protocol with an extremely low false positive rate. We evaluate our approach by launching several attacks that exploit the generic vulnerabilities of the BACnet Protocol. A classification of detected attacks is introduced at the end.
Keywords :
IP networks; Internet; computer network security; data mining; knowledge based systems; protocols; BACnet protocol monitoring module; Internet; anomaly based intrusion detection; building automation and control network; data mining; fire alarm system; public network; rule based anomaly detection; Buildings; Feature extraction; IP networks; Monitoring; Protocols; Security; Training; BACnet; Data mining; SCADA; anomaly detection;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Systems and Applications (AICCSA), 2014 IEEE/ACS 11th International Conference on
Type :
conf
DOI :
10.1109/AICCSA.2014.7073181
Filename :
7073181
Link To Document :
بازگشت