• DocumentCode
    3583002
  • Title

    Study on a novel hybrid adaptive genetic algorithm embedding conjugate gradient algorithm

  • Author

    Pan, Wang ; Zhun, Fan ; Shan, Feng ; Yun, Zhou

  • Author_Institution
    Huazhong Univ. of Sci. & Technol., Wuhan, China
  • Volume
    1
  • fYear
    2000
  • fDate
    6/22/1905 12:00:00 AM
  • Firstpage
    630
  • Abstract
    A hybrid adaptive genetic algorithm embedding conjugate gradient algorithm-conjugate gradient-adaptive evolutionary algorithm (CG-AGA) that combines the merit of the conjugate gradient algorithm is put forward in the paper. Compared with the conventional evolutionary algorithm, the new algorithm (CG-AEA) is more efficient in local searching, which is the major weak point of the conventional algorithm. Experiments have demonstrated the satisfactory speed and precision of CG-AEA
  • Keywords
    conjugate gradient methods; genetic algorithms; search problems; conjugate gradient-adaptive evolutionary algorithm; hybrid adaptive genetic algorithm; local searching; Algorithm design and analysis; Chaos; Evolutionary computation; Genetic algorithms; Genetic mutations; Information analysis; Optimization methods; Size control; Symmetric matrices;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2000. Proceedings of the 3rd World Congress on
  • Print_ISBN
    0-7803-5995-X
  • Type

    conf

  • DOI
    10.1109/WCICA.2000.860048
  • Filename
    860048