DocumentCode :
3583700
Title :
Wavelet and HMM association for ECG segmentation
Author :
Le Page, Ronan ; Provost, Karine ; Boucher, Jean-Marc ; Cornily, Jean-Christophe ; Blanc, Jean-Jacques
Author_Institution :
Dpt. Signal et Communications, École Nationale Supérieure des Télécommunications de Bretagne, Technopôle Brest Iroise, BP 832, 29285 Brest, France
fYear :
2000
Firstpage :
1
Lastpage :
4
Abstract :
This paper presents a multiscale Hidden Markov Model (HMM) to improve an automatic segmentation of an electrocardiographic signal (ECG). While the HMM describes the dynamical mean evolution of cardiac cycle, the use of wavelet analysis in association with the HMM leads to take into account local singularities and to obtain better segmentation results. This was tested on a learning base composed of 130 patients.
Keywords :
Correlation; Electrocardiography; Hidden Markov models; Manuals; Signal resolution; Standards; Wavelet coefficients;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal Processing Conference, 2000 10th European
Print_ISBN :
978-952-1504-43-3
Type :
conf
Filename :
7075604
Link To Document :
بازگشت