• DocumentCode
    3584546
  • Title

    Natural gradient for temporally dependent component analysis

  • Author

    Shi, Zhenwei ; Cheng, Dalong ; Tan, Xueyan ; Jiang, Zhiguo

  • Author_Institution
    Image Process. Center, Beihang Univ., Beijing, China
  • Volume
    2
  • fYear
    2010
  • Firstpage
    972
  • Lastpage
    975
  • Abstract
    The temporally dependent component analysis (TDCA) method for blind source separation (BSS) is introduced. As a new principle, it is shown that maximizing the mapping of autocorrelation of source signals can be used to perform BSS. We use the natural gradient algorithm for TDCA and study the mathematical properties of TDCA. Simulations by square temporal autocorrelation sources verify the efficient implementation of the proposed method.
  • Keywords
    blind source separation; correlation methods; independent component analysis; blind source separation; natural gradient algorithm; source signals; square temporal autocorrelation sources; temporally dependent component analysis; Algorithm design and analysis; Blind source separation; Correlation; Independent component analysis; Signal processing algorithms; Stability analysis; Blind source separation (BSS); Independent component analysis (ICA); Linear autocorrelation; Nonlinear autocorrelation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation (ICNC), 2010 Sixth International Conference on
  • Print_ISBN
    978-1-4244-5958-2
  • Type

    conf

  • DOI
    10.1109/ICNC.2010.5583820
  • Filename
    5583820