• DocumentCode
    3586898
  • Title

    Optic flow-based nonlinear control and sub-optimal guidance for lunar landing

  • Author

    Sabiron, Guillaume ; Burlion, Laurent ; Raharijaona, Thibaut ; Ruffier, Franck

  • Author_Institution
    Aix-Marseille Univ., Marseille, France
  • fYear
    2014
  • Firstpage
    1241
  • Lastpage
    1247
  • Abstract
    A sub-optimal guidance and nonlinear control scheme based on Optic Flow (OF) cues ensuring soft lunar landing using two minimalistic bio-inspired visual motion sensors is presented here. Unlike most previous approaches, which rely on state estimation techniques and multiple sensor fusion methods, the guidance and control strategy presented here is based on the sole knowledge of a minimum sensor suite (including OF sensors and an IMU). Two different tasks are addressed in this paper: the first one focuses on the computation of an optimal trajectory and the associated control sequences, and the second one focuses on the design and theoretical stability analysis of the closed loop using only OF and IMU measurements as feedback information. Simulations performed on a lunar landing scenario confirm the excellent performances and the robustness to initial uncertainties of the present guidance and control strategy.
  • Keywords
    closed loop systems; entry, descent and landing (spacecraft); image motion analysis; image sensors; image sequences; nonlinear control systems; space vehicles; stability; suboptimal control; IMU measurement; OF cues; OF measurement; OF sensors; associated control sequences; closed loop; minimalistic bioinspired visual motion sensors; minimum sensor suite; optic flow cues; optic flow-based nonlinear control; optimal trajectory; soft lunar landing; suboptimal guidance; theoretical stability analysis; Fuels; Mathematical model; Moon; Optimal control; Optimization; Sensors; Trajectory;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Robotics and Biomimetics (ROBIO), 2014 IEEE International Conference on
  • Type

    conf

  • DOI
    10.1109/ROBIO.2014.7090503
  • Filename
    7090503