DocumentCode :
3587786
Title :
The ADMM algorithm for distributed averaging: Convergence rates and optimal parameter selection
Author :
Ghadimi, Euhanna ; Teixeira, Andre ; Rabbat, Michael G. ; Johansson, Mikael
Author_Institution :
ACCESS Linnaeus Center, R. Inst. of Technol., Stockholm, Sweden
fYear :
2014
Firstpage :
783
Lastpage :
787
Abstract :
We derive the optimal step-size and over-relaxation parameter that minimizes the convergence time of two ADMM-based algorithms for distributed averaging. Our study shows that the convergence times for given step-size and over-relaxation parameters depend on the spectral properties of the normalized Laplacian of the underlying communication graph. Motivated by this, we optimize the edge-weights of the communication graph to improve the convergence speed even further. The performance of the ADMM algorithms with our parameter selection are compared with alternatives from the literature in extensive numerical simulations on random graphs.
Keywords :
graph theory; minimisation; ADMM algorithm; convergence rate; convergence speed; convergence times; distributed averaging; edge-weights; normalized Laplacian; optimal parameter selection; optimal step-size; over-relaxation parameter; random graphs; spectral properties; underlying communication graph; Algorithm design and analysis; Convergence; Eigenvalues and eigenfunctions; Optimization; Signal processing; Signal processing algorithms; Topology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 2014 48th Asilomar Conference on
Print_ISBN :
978-1-4799-8295-0
Type :
conf
DOI :
10.1109/ACSSC.2014.7094556
Filename :
7094556
Link To Document :
بازگشت