DocumentCode :
358921
Title :
A partial pivoting Schur-type algorithm for the factorization of matrices with the Jordan displacement structure
Author :
Kim, Kyungsup ; Chun, Joohwan
Author_Institution :
Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Taejon, South Korea
Volume :
5
fYear :
2000
fDate :
2000
Firstpage :
3378
Abstract :
We present a partial pivoting Schur-type algorithm for the factorization of matrices with the Jordan displacement structure. It is shown that a matrix with Jordan displacement structure can be transformed into a Cauchy-like matrix via a matrix with the circulant displacement structure. Using the property that a Cauchy-like matrix retains its displacement structure even though it is pivoted. We present a partial pivoting Schur-like algorithm which is fast and stable for a degenerated or irregular case
Keywords :
Fourier transforms; matrix algebra; Fourier transform; Jordan displacement structure; factorization; matrix algebra; partial pivoting Schur-type algorithm; Computational efficiency; Contracts; Eigenvalues and eigenfunctions; Engineering management; Gaussian processes; Identity management systems; Linear systems; Stability; System testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2000. Proceedings of the 2000
Conference_Location :
Chicago, IL
ISSN :
0743-1619
Print_ISBN :
0-7803-5519-9
Type :
conf
DOI :
10.1109/ACC.2000.879193
Filename :
879193
Link To Document :
بازگشت