• DocumentCode
    3591663
  • Title

    Automated segmentation of SAS images using the mean - standard deviation plane for the detection of underwater mines

  • Author

    Maussang, FrCx00E9;d?©ric ; Chanussot, Jocelyn ; H?©tet, Alain

  • Author_Institution
    Lab. des Images et des Signaux, Domaine Univ., St. Martin d´´Heres, France
  • Volume
    4
  • fYear
    2003
  • Firstpage
    2155
  • Abstract
    A segmentation method of synthetic aperture sonar (SAS) images is presented, in order to highlight some characteristics (number, position, shape, ...) of underwater mines echoes. This segmentation method is based on statistical characteristics of the sonar images, highlighted by the mean -standard deviation plane. It is automated by using an entropy criterion.
  • Keywords
    geophysical prospecting; geophysical signal processing; image segmentation; military systems; oceanographic techniques; sonar imaging; statistical analysis; synthetic aperture sonar; automated segmentation; entropy criterion; image segmentation; mean standard deviation plane; statistical analysis; synthetic aperture sonar images; underwater mines echoes; Amplitude estimation; Dissolved gas analysis; Equations; Image resolution; Image segmentation; Shape; Signal resolution; Speckle; Synthetic aperture sonar; Underwater tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    OCEANS 2003. Proceedings
  • Print_ISBN
    0-933957-30-0
  • Type

    conf

  • DOI
    10.1109/OCEANS.2003.178236
  • Filename
    1282810