DocumentCode :
3591663
Title :
Automated segmentation of SAS images using the mean - standard deviation plane for the detection of underwater mines
Author :
Maussang, FrCx00E9;d?©ric ; Chanussot, Jocelyn ; H?©tet, Alain
Author_Institution :
Lab. des Images et des Signaux, Domaine Univ., St. Martin d´´Heres, France
Volume :
4
fYear :
2003
Firstpage :
2155
Abstract :
A segmentation method of synthetic aperture sonar (SAS) images is presented, in order to highlight some characteristics (number, position, shape, ...) of underwater mines echoes. This segmentation method is based on statistical characteristics of the sonar images, highlighted by the mean -standard deviation plane. It is automated by using an entropy criterion.
Keywords :
geophysical prospecting; geophysical signal processing; image segmentation; military systems; oceanographic techniques; sonar imaging; statistical analysis; synthetic aperture sonar; automated segmentation; entropy criterion; image segmentation; mean standard deviation plane; statistical analysis; synthetic aperture sonar images; underwater mines echoes; Amplitude estimation; Dissolved gas analysis; Equations; Image resolution; Image segmentation; Shape; Signal resolution; Speckle; Synthetic aperture sonar; Underwater tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
OCEANS 2003. Proceedings
Print_ISBN :
0-933957-30-0
Type :
conf
DOI :
10.1109/OCEANS.2003.178236
Filename :
1282810
Link To Document :
بازگشت