DocumentCode :
3594902
Title :
Generalized Cipolla-Lehmer root computation in finite fields
Author :
Zhe Li ; Xiaolei Dong ; Zhenfu Cao
Author_Institution :
Dept. of Comput. Sci. & Eng., Shanghai Jiao Tong Univ., Shanghai, China
fYear :
2014
Firstpage :
163
Lastpage :
168
Abstract :
We consider the computation of r-th roots in finite field-s. For the computation of square roots, there are two typical probabilistic methods: the Tonelli-Shanks method and the Cipolla-Lehmer method. The former method can be extended to the case of r-th roots, which is called the Adleman-Manders-Miller(AMM) method. The latter method had been generalized to the case of r-th roots with r prime. In this paper, we extend the Cipolla-Lehmer to the case of r-th root with r prime power and give the expected running time of our algorithm.
Keywords :
algebra; probability; AMM method; Adleman Manders Miller method; Tonelli-Shanks method; algebraic equation; finite fields; generalized Cipolla-Lehmer root computation; latter method; probabilistic methods; square root computation; finite field; root computation; the Cipolla-Lehmer method;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Information and Network Security, ICINS 2014 - 2014 International Conference on
Print_ISBN :
978-1-84919-909-4
Type :
conf
DOI :
10.1049/cp.2014.1281
Filename :
7133812
Link To Document :
بازگشت