• DocumentCode
    3596853
  • Title

    Combination of ECG parameters with support vector machines for the detection of life-threatening arrhythmias

  • Author

    Alonso-Atienza, F. ; Morgado, Eduardo ; Fernandez-Martinez, Lorena ; Garcia-Alberola, A. ; Rojo-Alvarez, Jose

  • Author_Institution
    Signal Theor. & Commun., Rey Juan Carlos Univ., Fuenlabrada, Spain
  • fYear
    2012
  • Firstpage
    385
  • Lastpage
    388
  • Abstract
    Early detection of ventricular fibrillation (VF) and fast ventricular tachycardia (VT) is crucial for the success of the defibrillation therapy. A wide variety of detection algorithms have been proposed based on temporal, spectral, or complexity parameters extracted from the ECG. However, these algorithms are constructed by considering each parameter individually. This study aimed to analyze the performance of combining previously defined ECG parameters for the detection of life-threatening arrhythmias using support vector machines (SVM). A total of 11 parameters have been computed, namely, TCI, STE, MEA, CM, VFleak, M, A2, FM, MAV, PSR and HILB. We studied two different binary detection scenarios: shockable (FV plus TV) vs nonshockable arrhythmias, and VF vs nonVF rhythms. We used the MITDB, the CUDB, and the VFDB to evaluate our algorithms. Sensitivity and specificity analysis show that the combination of parameters with SVM outperforms individual detection algorithms.
  • Keywords
    Hilbert transforms; electrocardiography; medical disorders; medical signal processing; patient treatment; phase space methods; support vector machines; A2; CM; CUDB; ECG parameters; FM; HILB; Hilbert transform; MAV; MEA; MITDB; PSR; STE; SVM; TCI; VF filter; VFleak; binary detection scenarios; complexity measurement; complexity parameters; defibrillation therapy; detection algorithms; early detection; fast ventricular tachycardia; life-threatening arrhythmia detection; mean absolute value; median frequency; modified exponential; nonVF rhythms; nonshockable arrhythmias; phase space reconstruction; spectral algorithm; standard exponential; support vector machines; threshold crossing interval; ventricular fibrillation; Databases; Detection algorithms; Electric shock; Electrocardiography; Heart beat; Sensitivity; Support vector machines;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computing in Cardiology (CinC), 2012
  • ISSN
    2325-8861
  • Print_ISBN
    978-1-4673-2076-4
  • Type

    conf

  • Filename
    6420411