DocumentCode :
3599383
Title :
Complexity of block-sequential update for symmetric neural networks
Author :
Goles, Eric ; Matamala, Mart?­n
Author_Institution :
Fac. de Ciencias Fisicas y Matematicas, Chile Univ., Santiago, Chile
Volume :
2
fYear :
1993
Firstpage :
1469
Abstract :
We prove that the dynamics of arbitrary neural networks (not necessarily symmetric) of size n can be simulated by symmetric neural nets of size 3n updated in a block-sequential mode. As a particular case we prove that the class of symmetric neural nets with arbitrary diagonal elements updated sequentially is universal i.e. it simulates any nonsymmetric neural networks dynamics.
Keywords :
neural nets; block-sequential update complexity; nonsymmetric neural network dynamics simulation; symmetric neural networks; Convergence; Electronic mail; Neural networks; Neurons; Partitioning algorithms; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1993. IJCNN '93-Nagoya. Proceedings of 1993 International Joint Conference on
Print_ISBN :
0-7803-1421-2
Type :
conf
DOI :
10.1109/IJCNN.1993.716822
Filename :
716822
Link To Document :
بازگشت