Title :
PreProPath: An Uncertainty-Aware Algorithm for Identifying Predictable Profitable Pathways in Biochemical Networks
Author :
Ullah, Ehsan ; Walker, Mark ; Kyongbum Lee ; Hassoun, Soha
Author_Institution :
Dept. of Comput. Sci., Tufts Univ., Medford, MA, USA
Abstract :
Pathway analysis is a powerful approach to enable rational design or redesign of biochemical networks for optimizing metabolic engineering and synthetic biology objectives such as production of desired chemicals or biomolecules from specific nutrients. While experimental methods can be quite successful, computational approaches can enhance discovery and guide experimentation by efficiently exploring very large design spaces. We present a computational algorithm, Predictably Profitable Path (PreProPath), to identify target pathways best suited for engineering modifications. The algorithm utilizes uncertainties about the metabolic networks operating state inherent in the underdetermined linear equations representing the stoichiometric model. Flux Variability Analysis is used to determine the operational flux range. PreProPath identifies a path that is predictable in behavior, exhibiting small flux ranges, and profitable, containing the least restrictive flux-limiting reaction in the network. The algorithm is computationally efficient because it does not require enumeration of pathways. The results of case studies show that PreProPath can efficiently analyze variances in metabolic states and model uncertainties to suggest pathway engineering strategies that have been previously supported by experimental data.
Keywords :
biochemistry; molecular biophysics; Flux Variability Analysis; PreProPath; biochemical networks; flux limiting reaction; metabolic engineering; metabolic networks; nutrients; pathway analysis; predictable profitable pathways; rational design; synthetic biology; uncertainty aware algorithm; Algorithm design and analysis; Biochemistry; Bioinformatics; Computational biology; Prediction algorithms; Flux Balance Analysis; Flux Variability Analysis; Flux balance analysis; Metabolic Networks; Uncertainty; flux variability analysis; metabolic networks; uncertainty;
Journal_Title :
Computational Biology and Bioinformatics, IEEE/ACM Transactions on
DOI :
10.1109/TCBB.2015.2394470