DocumentCode :
3601417
Title :
Convergence of an Upwind Finite-Difference Scheme for Hamilton–Jacobi–Bellman Equation in Optimal Control
Author :
Bing Sun ; Bao-Zhu Guo
Author_Institution :
Sch. of Math. & Stat., Beijing Inst. of Technol., Beijing, China
Volume :
60
Issue :
11
fYear :
2015
Firstpage :
3012
Lastpage :
3017
Abstract :
This technical note considers convergence of an upwind finite-difference numerical scheme for the Hamilton-Jacobi-Bellman equation arising in optimal control. This effective scheme has been well-adapted and successfully applied to many examples. Nevertheless, its convergence has remained open until now. In this note, we show that the solution from this finite-difference scheme converges to the value function of the associated optimal control problem.
Keywords :
convergence of numerical methods; finite difference methods; optimal control; partial differential equations; Hamilton-Jacobi-Bellman equation; convergence; optimal control; upwind finite-difference scheme; Approximation methods; Convergence; Equations; Feedback control; Mathematical model; Optimal control; Viscosity; Convergence; Hamilton-Jacobi-Bellman equation; Hamilton???Jacobi???Bellman equation; finite-difference; numerical approximation; optimal control;
fLanguage :
English
Journal_Title :
Automatic Control, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9286
Type :
jour
DOI :
10.1109/TAC.2015.2406976
Filename :
7047786
Link To Document :
بازگشت