Title :
A Program for Simultaneous Network Signal Timing Optimization and Traffic Assignment
Author :
Hajbabaie, Ali ; Benekohal, Rahim F.
Author_Institution :
Dept. of Civil & Environ. Eng., Washington State Univ., Pullman, WA, USA
Abstract :
This study formulates a program for simultaneous traffic signal optimization and system optimal traffic assignment for urban transportation networks with added degree of realism. The formulation presents a new objective function, i.e., weighted trip maximization, and explicit constraints that are specifically designed to address oversaturated conditions. This formulation improves system-wise performance while locally prevents queue spillovers, de-facto reds, and gridlocks. A meta-heuristic algorithm is developed that incorporates microscopic traffic flow models and system optimal traffic assignment in genetic algorithms. This solution technique efficiently optimizes signal timing parameters, at the same time solves system optimal traffic assignment, and accounts for oversaturated conditions and different driver´s behaviors. This study also proposes a framework to calculate an upper bound on the value of the objective function by solving the problem while several constraints (i.e., network loading and traffic assignment) are relaxed. An empirical case study for a portion of downtown Springfield, Illinois has been conducted under four demand patterns. Findings indicate that our solution approach can solve the problem effectively. Several managerial insights have also been drawn.
Keywords :
intelligent transportation systems; road traffic; traffic engineering computing; Illinois; Springfield; United States of America; metaheuristic algorithm; objective function; realism degree; signal timing parameters; simultaneous network signal timing optimization; traffic assignment; urban transportation network; weighted trip maximization function; Genetic algorithms; Linear programming; Microscopy; Optimization; Timing; Upper bound; Vehicles; Network signal timing optimization; genetic algorithms; objective function upper-bound; system optimal; traffic assignment; weighted trip maximization;
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
DOI :
10.1109/TITS.2015.2413360